Muon Colliders Parameters

ool R. B. Palmer (BNL)
¥ L/ MAP Winter Collaboration Meeting
T SLAC

e 3/8/12

e Introduction to scheme

— Proton Driver
— Target and phase rotation
—Cooling  (including space charge)
— Acceleration
—Rings (including v radiation)
e Power consumption & CLIC comparison

e Conclusion
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e Muon Colliders certainly smaller,
e Use less power ?

e Cheaper 77



Schematic
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Parameters

C of m Energy 1.5 3 6 TeV
Luminosity 1 4 12 10%* em?sec™!
Muons/bunch 2 2 2 1012
Muon Trans Emittance| 25 25 25 pi pm
Muon Long Emittance |72,000|72,000 72,000 (tm

e [ hese have been stable for some time

e But there are some problems only now being addressed:

e Space charge effects
e Allowances for emittance dilution in Acceleration

e Requirements for Super-conductors in 6D cooling

| will step through the major systems, but spend most time on
Cooling



Proton Driver e.g. Project X
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New Task Force on Project X upgrades Gollwitzer
e Upgrade CW linac to 5 mA
e 3-8 GeV Pulsed Linac

e Accumulator, Buncher, and Trombone (Ankenbrandt)
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Target & Capture
New 20 T Hybrid with increased Shielding
2
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e Copper coil gives 6 T,but uses 15 MW of wall power

e Super-conducting solenoid give 14 T, taperingto 3 T,
but has huge stored energy

e Tungsten Carbide in water shielding for 4 MW 8 GeV beam

e Considering a smaller bore all superconducting magnet with lower
field (eg 15 T)



Design of a Chikane and absorber
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e Greatly reduces unwanted proton and elec-
trons passing down channel and heating su-
perconducting components

e Lowers cryogenic load and needed wall power
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New Phase Rotation—12 bunches (Neuffer)
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e Good efficiency into just 12 bunches



3 candidate 6D cooling lattices
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e All simulated  All have challenges



Guggenheim and HCC Performances
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e Emittances are vs. length along the beams (not the helix axes)
e Cooling rates similar

e Transmissions similar for similar gradients,
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Guggenheim Advances since JLAB Meeting

e 6D Merge from 12 to 1 bunch Now using Helical Channel

e Use of Non-flip (Fernow) lattices to ease conductor requirements
e \Weakened emittance exchange to ease longitudinal space charge
e Adding new stage to get back to Final Cooling sequence

e Then adding HTS non-flip lattices to cool to lower emittances

e Redesign Final Cooling Sequence giving allowance for dilutions
and increased focus in transports between stages for space charge
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New 6D Merge (A work in progress)
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e Simulation used 60 m Helical channel and unreasonable gradients

e Now reducing gradients and trying simple drift
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Emit long (mm)

New (3/7/12) Cooling Sequence
ICOOL Simulations of 6D cooling are for Guggenheim lattices
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Likely Super-Conductor Performance Limits

e Take 'Engineering current densities’ from NHMFL data

e Assume average jp= 60% of YBCO tape, as achieved in BNL/PBL
test coils

e Assume average jp= 25% of Nb3Sn, allowing for stabilizer & ss
support (Bob Weggel 15 T design)

e Assume average jp= 50% of BSCCO, assuming need for ss sup-
port, but no additional stabilizer

e [hese will be somewhat conservative because they assume uni-
form density based on highest field
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Discussion of Super-conductor requirements

e Current HCC designs require high current densities
e HCC designs to cool below 0.41 mm will need HTS

e Later RFOFO lattices have specs beyond Nb3Sn

e But non-flip (wait) lattices can get to € | =0.24 mm with Nb3Sn
e And non-flip can get to lower ¢ | (e.g.0.15 mm) with YBCO
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Non-flip vs. RFOFO Lattices
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New Non-flip lattices with HT'S coils

cel Mom beta emit| L rl r2 j Bo Bmax

cm MeV/c cm mm|cm cm cm A/mm? T T
37h |41.0 200 28 024|168 42 216 174 23.6 24.7
38h [41.0 200 23 020|168 3.8 188 197 244 253
39h (410 200 19 0.17]16.8 26 176 199 26.0 26.2
40h 1336 160 15 0.14|134 2.1 141 253 263 26.6

e Emittances to 0.14 mm now possible

e Conductor parameters are not apparently a problem

e Fields on rf even higher

e But we do not know if this is bad with Be

e \We too should study bucking coils

18




New Final Cooling to ¢, =20 ym ¢)=43 mm
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Re-acceleration
& Matching Transport solenoid

e Cooling in hydrogen simulated for all 10 stages (was 13)
e Matching and re-acceleration still only simulated last stages

e Consequences of a limitation to 30 T now more acceptable
but we believe that 40 T is attainable and leave as baseline

19



Acceleration
E GEV passes Lengths

- 1) 4-1.5 Linac L(linac)= 68 m
1.5-12.5 RLA n=4.5 L(linac)= 306 m

o—o - 2)
@ @ 3) 12.5-100 RLA n=6.5 L(linac)= 1250 m

4) 100-400 RCS n=23 Circ=6283m

5) 400-750 RCS n=27 Circ=6283m
both RCS pulsed at |5 Hz

e These specifications and loss estimate have not been updated
e Transmission was 65.2 %, but will be somewhat worse

e Hopefully compensated by improvements in front end & cooling

20



Radiation
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Yuri Alexahin and magnet de-
signers are making progress
here
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MC Rings

6 TeV design is my extrapolation for the same v rad

C of m Energy 1.5 3 6 TeV
Luminosity 1 4 12 110%* cm?sec™!
Muons/bunch 2 2 10"
Total muon Power 72 |11.5] 115 MW
Ring <bending field> | 6.04 | 8.4 | 11.6 T
Ring circumference 26 | 45 0 km
g*atIP =0, 10 5 2.5 mm
rms momentum spread | 0.1 | 0.1 | 0.1 %
Depth 135 | 135 | 540 m
Repetition Rate 15 | 12 6 Hz
Proton Driver power 4 32 | 1.6 MW
Muon Trans Emittance| 25 | 25 25 (tm
Muon Long Emittance | 72 | 72 72 mm

Note: Muon parameters the same for all energies
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Estimated Wall Power Requirement

From summer 2011

Len | Static | Dynamic Tot
4° rf PS 4° 20°

m MW | MW MW MW MW| MW
p Driver (SC linac) (20)
Target and taper 16 150 04 15.4
Decay and phase rot 95 0.1 0.8 4.5 5.4
Charge separation 14
6D cooling before merge | 222 | 0.6 7.2 6.8 6.1 | 20.7
Merge 115 | 0.2 1.4 1.6
6D cooling after merge | 428 | 0.7 2.8 26 | 6.1
Final 4D cooling /8 0.1 1.5 01| 1.7
NC RF acceleration 104 | 0.1 4.1 4.2
SC RF linac 140 | 0.1 3.4 35
SC RF RLAs 10400 | 9.1 19.5 28.6
SC RF RCSs 12566 | 11.3 11.8 23.1
Collider ring 2600 | 2.3 3.0 10 15.3
Totals 26777 | 24.6 525 18.0 21.7 8.8 |145.6
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Discussion

e Recent and discussed reductions

— Discussion of replacing hybrid 20 T capture solenoids with 15-

18 T Nb3Sn coils removing 15 MW resistive coil
— Improved shielding around capture reducing losses to 4 deg
0.86 kW— 0.46 kW lowering wall power by 200 kW

— Addition of Chikane should reduce losses in early cooling from
50 kW to say 25 kW lowering wall power 6.8— 3.4 MW

e Could reduce total by 18.6 MW

For other energies (including above):

C of mass Energy TeV 1.5 3 0
Wall power MW 127 140 180

Does not include detectors, buildings, air conditioning etc and is
probably optimistic, despite the trend
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Compare 3 TeV p"p~with ete” CLIC

AT ete”
Luminosity 10%* em?sec ™1 4 2
Detectors 2 1
g*atIP =0, mm 5 0.09
Lepton Trans Emittance £4m 25 0.02
rms bunch height (m 4 0.001
Total lepton Power MW 11.5 28
Proton /electron Driver power MW 4 188
Wall power MW 140 465

e . ;1 luminosity twice CLIC's (for dE/E < 1%) & 2 detectors
e Spot sizes and tolerances much easier than CLIC's

e Wall power =~ 1/3 CLIC's

e But less developed and needs the Muon Accelerator Program
(MAP) — Feasibility Study
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Technology progress:
Progress in High Pressure Gas Cavity
in beam tests

--------------------------
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e No breakdown with magnetic field and/or beam

e Beam loading, and effects of electro-negative gas, understood
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Progress in HTSmagnets by PBL/BNL SBIR
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e Expected field later this year =~ 35 T
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Progress in rf with magnetic fields

Cipper button

after 28 MV/m
&3 T

Beryllium button
after 33 MV/m

&3 T

Clear evidence that Be resists damage in magnetic fields
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CONCLUSION

e Much simulation progress this year

— new capture magnet design, chikane, new merge designs, Non-
flip cooling lattices, lower final emittances, detector background
studies

— Space charge problems appear soluble
e Progress in needed technologies

—In HP Gas cavity in a beam
—In YBCO coils

— In rf-in-magnetic fields using Beryllium

e Favorable comparisons with CLIC:

— Luminosity greater than CLIC's
— Estimated wall power =~ 1/3 of CLIC

e Extrapolation to higher energies thinkable
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